

Distributed Symmetric Multi-Processing (DSMP)
A New Paradigm for High Performance Computing

Symmetric Computing

Venture Development Center
University of Massachusetts

100 Morrissey Boulevard
Boston, MA 02125

USA

Page 2 of 10

This page is intentionally blank.

Page 3 of 10

Introduction

Today, the de-facto standard for high performance computing (HPC) is distributed memory
clusters connected using the Message Passing Interface (MPI) protocol. However, to
achieve the performance that HPC clusters promise, applications must be tailored for the
architecture. Over time, a library of cluster-ready HPC applications has been developed.
However, there are many important end-user applications left unaddressed. Problems with
big data-sets are awkward at best for the MPI model. There is no shared memory for
storing large data structures. Even after a successful port, many programs suffer poor
performance due to MPI hierarchy and message latency, and/or reliance on file systems as
a working global memory. Entire fields of scientific endeavor that could benefit from high
performance computing have not, due primarily to the programming complexity of HPC
clusters.

Most scientists, researchers, engineers and analysts like to focus on their specialty, get their
computations executed quickly, and avoid becoming entangled in the programming
complexities that supercomputing clusters demand. They typically develop their work on
Symmetric Multi-Processing (SMP) workstations -- SMP computers aligning more closely
with their computer skills, and only need supercomputers for their more demanding
applications and data sets. Scientists, researchers, engineers and analysts would rather not
re-write their applications for a supercomputing cluster and would prefer to use SMP
supercomputers. However, SMP supercomputers have been out of reach economically for
many. They have been too expensive due to their reliance on costly proprietary hardware
and proprietary interconnects, and they have had limited scalability.

What is needed is the ability to make computing clusters function like large SMP machines.
There are two approaches that have attempted to achieve this goal. The first effort tried to
mimic the architecture of mainframe SMP machines by building custom boards that could
be added to each node in a cluster that would effectively enforce cache line coherence and
shared memory across all nodes. The second effort capitalized on the techniques of
virtualization, and built a hypervisor that ran on each node creating a virtual SMP machine.
The performance of both of these approaches was somewhat disappointing.

Symmetric Computing’s patented distributed symmetric multi-processing (DSMP) takes a
different approach. By recognizing the limitations of the mainframe cache line coherency
model, and implementing our algorithms as extensions to the Linux kernel, we are able to
deliver the performance of mainframe supercomputers at the cost of computing clusters.
Our model maintains the programming simplicity of SMP. The DSMP technology can
potentially bring the benefits of supercomputing to heretofore unreached fields of
research, development and analysis. Furthermore, this technology has the potential to
replace traditional mainframes in many HPC and enterprise applications.

Page 4 of 10

Limitations of MPI Supercomputing Clusters

Computations assigned to a MPI cluster must be carefully structured to accommodate the
limitations of the individual server nodes that make up the cluster. In many cases, highly
skilled programmers are needed to modify code to accommodate the clusters hierarchy,
per-node memory limitation and messaging scheme. Once the data-sets and program are
ready to run, they must first be propagated onto each and every node within the cluster,
usually by means of a cluster file system such as Lustre. Only then can actual work begin.

Besides complexity, there are entire classes of applications and data sets that are
inappropriate for MPI clusters. Many high performance computing applications (e.g.,
genomic sequencing, coupled engineering models) invoke large data sets and require large
shared memory (≥512-GB RAM). Addressing these problems is awkward using the MPI-1
model, for it has no shared memory concept, and MPI-2 has only a limited distributed
shared memory concept with a significant latency penalty. Hence a significant restructuring
of the application and associated data sets is required in order to use MPI.

Data-sets in many fields (e.g., bioinformatics & life sciences, Computer-Aided Engineering
(CAE), energy, earth sciences, financial analyses) are becoming too large and too
computationally intensive for single commodity SMP servers. In many cases, it is
impractical and inefficient to rewrite the application to use an MPI cluster. The alternatives
are to:

 Restructure the problem (to fit within the memory limitations of the nodes and
suffer inefficiencies)

 Wait for and purchase time on a University or National Labs SMP supercomputer.

Each of these options has their own drawbacks, ranging from latency & performance to
lengthy queues for time on a government (e.g., NSF, DoE) supercomputer. What HPC users
really want is unencumbered access to an affordable, large shared-memory SMP
supercomputer.

Distributed Symmetric Multi-Processing (DSMP)

Symmetric Computing DSMP architecture provides affordable SMP supercomputing. It
enables Distributed Shared Memory (DSM), or Distributed Global Address Space (DGAS),
across an Infiniband connected cluster of homogeneous Symmetric Multiprocessing (SMP)
nodes. The cluster is converted into a DSMP supercomputer that can service very large
data-sets or accommodate MPI applications with increased efficiency and throughput
running on shared memory. DSMP provides an alternative to the MPI protocol for a wide
range of memory intensive applications because of its ability to service economically a
wider class of problems with greater efficiency.

DSMP creates a large, shared-memory software architecture at the operating system level.
It supports distributed multi-threading and synchronization across all processor cores on
all of the nodes using the standard POSIX thread model (Pthreads). From the programmer’s

Page 5 of 10

perspective, there is a single software image and one Linux operating system for a DSMP
cluster. Since DSMP runs on clusters built with industry standard severs, it delivers large
shared memory, many-core SMP mainframe computing with both economy and
performance.

The key features of the DSMP architecture are:

1. A transactional distributed shared-memory architecture
2. A kernel based RDMA inter-node communication driver using Infiniband
3. An application driven, memory-page coherency scheme
4. A new kernel based distributed POSIX threads implementation supporting

localization
5. Support for process execution and System V IPC across all nodes
6. Distributed buffered file I/O
7. Single system image via head node

How DSMP Works

DSMP is implemented as a Linux kernel enhancement. The DSMP Linux kernel is installed
on every node in the Infiniband connected cluster. These kernels coordinate their activities,
effectively operating as a single cluster operating system. One node is designated as the
head node and the others as worker nodes. An application program begins execution on the
head node, but has the ability to allocate global memory from a combined pool taken from
multiple nodes. It also has the ability to launch execution threads running on multiple
worker nodes, but referencing the same global address space. Currently, DSMP will support
up to 16 nodes that host global memory. Additional compute only worker nodes that can
access but not host global memory are supported. The generalized DSMP architecture is
shown as follows. Nodes that have a green shaded global memory region are global
memory hosts, whereas nodes with white shaded global memory regions are compute only
and access global memory.

Page 6 of 10

Transactional Distributed Shared-Memory System1

The centerpiece of the DSMP architecture is its transactional distributed shared-memory
architecture, which is based on a two-tier memory organization. DSMP divides physical
memory into two partitions: local working memory and global shared memory. The global
partitions on each node are combined to form a single global shared memory that is
linearly addressable by all nodes in a consistent manner. The global memory maintains a
reference copy of each 4096-byte memory page used by a program running on the system
at a fixed address. The local memory contains a subset of the total memory pages used by
the running program. Memory pages are copied via hardware based demand-paging from
global memory to local memory when needed by the executing program. Any changes
made to local memory pages are written back to the global memory. At the same time, a
page invalidation message is sent to all nodes in order to force any node that has a copy of
the page, to update that copy. In the event that a node receives a page invalidation request
for a page that has been locally modified, a page invalidation fault is generated.

DSMP sets the size of local memory at boot time, typically 64 GB. When there is a page-
fault in local memory, the DSMP kernel finds an appropriate not recently used (NRU) 4096-
byte memory page in local memory and swaps in the missing global memory page. The
large local memory (cache) provides all the performance benefits (STREAMS,

1 The use of the word “transactional” here is drawn from the standard programming model
used in database development, where the programmer is responsible for managing record
locks in order to ensure data coherency.

Page 7 of 10

RandomAccess and Linpack) of local memory in a legacy SMP server, with the ability to
service a page fault from the large globally shared memory in less than 5µ-seconds. Not
only is this architecture unique and extremely powerful, it can scale to hundreds of nodes
with no appreciable loss in performance.

Kernel based RDMA Infiniband Driver: DSMP is made possible with the advent of a low-
latency, commercial-off-the-shelf network fabric. Today Infiniband is the fabric of choice
for most supercomputing clusters due to its low latency and high bandwidth. In order to
squeeze every last nanosecond of performance out of the fabric, DSMP bypasses the Linux
Infiniband protocol stack with its own low-level driver. The DSMP kernel based Infiniband
driver leverages the native RDMA capabilities of the Infiniband host channel adapter
(HCA). This allows the HCA to service and move memory-page requests without processor
intervention. Hence, RDMA eliminates the overhead for message construction and
deconstruction, reducing system-wide latency.

Application-Driven, Memory Page Coherency Scheme: All proprietary shared memory
mainframe computers maintain memory consistency and/or coherency via a hardware
extension of the host processors cache-line coherency scheme. DSMP, which utilizes local
and global memory resources, takes a different approach. Coherency within the local
memory of each of the individual SMP servers is maintained by the x86-64 Memory
Management Unit (MMU) on a cache-line basis. Memory consistency between a page in
global memory and all copies of the page in local memory is maintained by the DSMP Linux
kernel. This is further supported by a set of system calls that perform memory page lock
operations similar to those used in database transactions:

 Allow a global memory page to be locked for exclusive access by a node
 Release the lock
 Force a local memory page to be immediately updated to global memory

This Symmetric Computing API allows programs with multiple execution threads, possibly
running on multiple nodes, to maintain global memory page consistency across all nodes.
This API, combined with some simple intuitive programming rules, makes porting an
application to a multi-node DSMP platform simple and manageable. Those rules are as
follows:

 Be sensitive to the fact that memory-pages are swapped into and out of local
memory (cache) from global memory in 4096-byte pages.

 Since the granularity of a DSMP global memory lock is a 4096-byte page, it is
important not to map data structures that need to be locked independently on the
same memory page. A new malloc() option is provided to force alignment on a
4096-byte boundary when your application requires it. This ensures that data
structures that need to be accessed independently by the program are on separate
pages.

 Identify the cause of any page invalidation faults, and add locks to handle access to
the affected pages by multiple threads.

Page 8 of 10

 If there is a data-structure that can be accessed and modified by multiple threads,
then the three new system calls can be used to maintain memory-consistency:
1. msync() forces immediate synchronization of a data structure with its reference

copy in global-memory
2. mlock() prevents any other process thread from accessing and subsequently

modifying the noted data-structure. mlock() also invalidates all other copies of
the data structure (memory-pages) within the computing-system. If a process
thread on another node accesses a memory-page associated with a locked data
structure, execution is blocked until the structure (memory page) is released

3. munlock() unlocks a previously locked data structure

Distributed POSIX Threads: The standard for parallelizing shared-memory C/C++ or
Fortran programs is by using OpenMP and the POSIX thread library Pthreads. The DSMP
implementation of Pthreads is within the kernel and operates transparently across all the
nodes in the system. In addition, support is provided for localizing a thread on a particular
node. Mutex and other synchronization primitives function across all nodes.

Distributed Process Execution and System V IPC: DSMP supports the launching of standard
Linux processes on any selected node from the head node. In addition, System V IPC
features such as shared memory segments are supported across all nodes.

Distributed Buffered File I/O: DSMP supports a distributed file I/O feature, where a process
on the head node can open a file with a distributed file descriptor that will allow buffered
file read and writes by threads or processes running on any node in the system.

 DSMP Price-Performance

The table below compares MPI Clusters, SMP Mainframes and DSMP-enabled clusters:

Page 9 of 10

 MPI Cluster SMP Mainframe DSMP Cluster

Proprietary Hardware No Yes No

Affordability $ $$$ $

Shared Memory No Yes Yes

Single Software Image No Yes Yes

IPMI Yes Yes Yes

RAS Yes Yes Yes

Scalable Yes No Yes

Performance of technical computing applications is largely a function of two metrics:

1. Processor performance (computational throughput) and;
2. Global Memory Read/Write performance (particularly random access).

Currently, DSMP cannot match mainframe performance in either of these metrics.
However, due to the faster pace of development of industry standard processors and
interconnects, both processors performance and global memory access performance are
rapidly improving. The performance of latest generation industry standard processors
already rivals that of proprietary mainframe processors. Over time the performance gap
between a DSMP cluster and a proprietary SMP mainframe computer of equivalent
processor/memory density will continue to narrow and eventually disappear. Given that
the cost of the cluster is one-tenth the cost of an equivalent mainframe, it already
dramatically excels in price / performance.

Today, Symmetric Computing is offering its direct connect family of departmental
supercomputers. These are small DSMP clusters directly connected via infiniband without
the need of a switch. They include two, three, four and five node system configurations,
with shared memory capacities of 2 to 5 TB, and 128 to 320 processor cores. The following
diagram shows a Trio Departmental Supercomputer with 192 processor cores and 3 TB of
RAM. It is made with three homogeneous 4P (four processor sockets) servers each with 64
cores (using 16-core AMD Opteron™ 6380 series processors) and 1 TB of physical memory
per node.

Page 10 of 10

Looking forward, Symmetric Computing plans to introduce a multi-node Infiniband switch-
based system delivering up to 2048 cores and 32 TB of RAM in a single 42U rack. In
addition, we are working with our partners to deliver turnkey platforms optimized for
application specific missions.

About Symmetric Computing

Symmetric Computing is a Boston based software company with offices at the Venture
Development Center on the campus of the University of Massachusetts. We design software
to accelerate the use and application of shared-memory computing systems for
bioinformatics and life sciences, computer-aided engineering, energy, earth sciences,
financial analyses and related fields. Symmetric Computing is dedicated to delivering
standards-based, customer-focused technical computing solutions for users, ranging from
Universities to enterprises.

For more information, please visit www.SymmetricComputing.com

http://www.symmetriccomputing.com/

